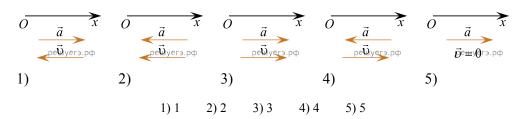

Централизованное тестирование по физике, 2019

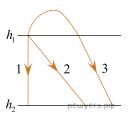
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке изображена шкала спидометра электромобиля. Электромобиль движется со скоростью, значение которой равно:



2. Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 3.0$ с он проехал путь $s_1 = 45$ м, то за промежуток времени $\Delta t_2 = 5.0$ с велосипедист проедет путь s_2 , равный:

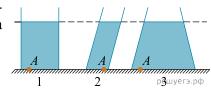

3. Материальная точка равномерно движется по окружности радиусом R=50 см. Если в течение промежутка времени $\Delta t=25$ с материальная точка совершает N=40 оборотов, то модуль её скорости υ равен:

1) 5
$$M/c$$
 2) 8 M/c 3) 10 M/c 4) 12 M/c 5) 15 M/c

4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t)=8+2t-3t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени $t_0=0$ с показаны на рисунке, обозначенном цифрой:

5. Тело перемещали с высоты h_1 на высоту h_2 по трём разным траекториям: 1, 2 и 3 (см. рис.). Если при этом сила тяжести совершила работу $A_1,\,A_2$ и A_3 соответственно, то для этих работ справедливо соотношение:

1)
$$A_1 > A_2 = A_1$$


2)
$$A_1 > A_2 > A_3$$

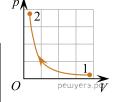
3)
$$A_1 = A_2 = A_3$$

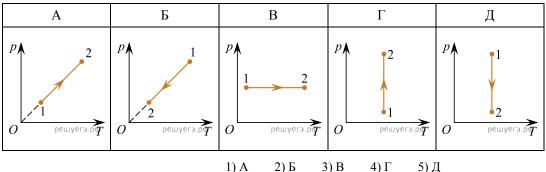
4)
$$A_1 = A_2 < A_2$$

1)
$$A_1 > A_2 = A_3$$
 2) $A_1 > A_2 > A_3$ 3) $A_1 = A_2 = A_3$ 4) $A_1 = A_2 < A_3$ 5) $A_1 < A_2 < A_3$

6. На рисунке изображены три открытых сосуда (1, 2 и 3), наполненные водой до одинакового уровня. Давления p_1, p_2 и p_3 воды на дно сосудов в точке A связаны соотношением:

1)
$$n_2 > n_1 > n_2$$


1)
$$p_2 > p_1 > p_3$$
 2) $p_3 > p_1 > p_2$ 3) $p_1 = p_2 = p_3$ 4) $p_1 = p_2 > p_3$

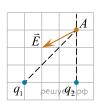

3)
$$p_1 = p_2 = p_3$$

4)
$$p_1 = p_2 > p_3$$

5)
$$p_1 > p_2 > p_3$$

7. На графике в координатах (p, V) представлен процесс $1 \rightarrow 2$ в идеальном газе, количество вещества которого постоянно. В координатах (p, T) этому процессу соответствует график, обозначенный буквой:

8. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n=1,2 раза, то относительная влажность Ф воздуха равна:


- 5) 83 %
- **9.** Идеальный одноатомный газ, количество вещества которого $\upsilon = \frac{1}{8.31}$ моль, отдал количество теплоты |Q| = 20 Дж. Если при этом температура газа уменьшилась на $|\Delta t| = 20$ °C, то:

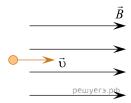
1) над газом совершили работу A' = 10 Дж;

- 2) над газом совершили работу A' = 50 Дж; 4) газ совершил работу A = 50 Дж, 3) газ не совершал работу A = 0 Дж;
 - 5) газ совершил работу $A = 10 \ Дж.$
- 10. Среди перечисленных ниже физических величин векторная величина указана в строке, номер которой:
 - 1) электрическое напряжение;
- 2) индуктивность;
- 3) электроёмкость;
- 4) напряжённость электростатического поля;
- 5) сила тока.

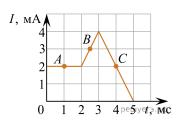
11. =

Точечные заряды q_1 и q_2 находятся в плоскости рисунка. Направление напряжённости \vec{E} электростатического поля, создаваемого этими зарядами в точке A, указано на рисунке. Для зарядов q_1 и q_2 справедливы соотношения под номером:

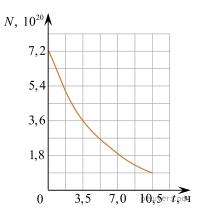
1)
$$q_1 < 0$$
, $q_2 < 0$


2)
$$q_1 > 0$$
, $q_2 > 0$

3)
$$q_1=0$$
, $q_2<0$

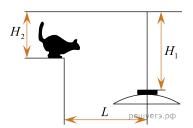

4)
$$q_1 > 0$$
, $q_2 < 0$

1)
$$q_1 < 0$$
, $q_2 < 0$ 2) $q_1 > 0$, $q_2 > 0$ 3) $q_1 = 0$, $q_2 < 0$ 4) $q_1 > 0$, $q_2 < 0$ 5) $q_1 < 0$, $q_2 > 0$


- **12.** Четыре резистора, сопротивления которых $R_1 = 2.0$ Ом, $R_2 = 3.0$ Ом, $R_3 = 4.0$ Ом и $R_4 = 1.0$ Ом, соединены последовательно и подключены к источнику постоянного напряжения. Если сила тока, протекающего через резистор R_3 , составляет $I_3 = 1,0$ A, то напряжение U на клеммах источника равно:
 - 1) 10 B 2) 12 B 3) 14 B 4) 16 B 5) 18 B
- **13.** Если в некоторый момент времени скорость \vec{v} в электрона лежит в плоскости рисунка и направлена вдоль линий индукции однородного магнитного поля (см. рис.), то электрон движется:

- 1) с постоянным ускорением прямолинейно;
- 3) равномерно и прямолинейно; 2) с постоянным ускорением по параболе, лежащей в плоскости рисунка; 4) равномерно по окружности, плоскость которой перпендикулярна линиям магнитной индукции; 5) равномерно по окружности, плоскость которой параллельна линиям магнитной индукции.
- **14.** Зависимость силы тока I в катушке индуктивности от времени t I, мА показана на рисунке. Для модулей ЭДС самоиндукции $|\varepsilon_{\rm c}(t_A)|, \ |\varepsilon_{\rm c}(t_B)|$ и $|\varepsilon_{\rm c}(t_C)|$, возникающей в катушке в моменты времени $t_{\rm A},\,t_{\rm B}$ и $t_{\rm C}$ соответственно, справедливо соотношение:

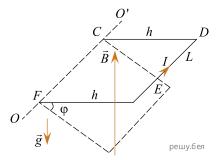
- 1) $|\varepsilon_{c}(t_{A})| > |\varepsilon_{c}(t_{B})| > |\varepsilon_{c}(t_{C})|$ 2) $|\varepsilon_{c}(t_{A})| > |\varepsilon_{c}(t_{C})| > |\varepsilon_{c}(t_{B})|$ 3) $|\varepsilon_{c}(t_{B})| = |\varepsilon_{c}(t_{C})| > |\varepsilon_{c}(t_{A})|$ 4) $|\varepsilon_{c}(t_{B})| > |\varepsilon_{c}(t_{A})| = |\varepsilon_{c}(t_{C})|$ 5) $|\varepsilon_{c}(t_{C})| > |\varepsilon_{c}(t_{B})| > |\varepsilon_{c}(t_{A})|$
- **15.** Если длина звуковой волны $\lambda = 0.800$ м, а её частота $\nu = 415$ Гц, то модуль скорости ν распространения звуковой волны равен:
 - 1) 310 m/c
- 2) 332 m/c
- $3)\ 350\ \text{m/c}$
- 4) 370 m/c
- 5)390 m/c
- **16.** На дифракционную решётку нормально падает монохроматический свет с длиной волны $\lambda =$ 750 нм. Если угол между направлениями на главные дифракционные максимумы четвёртого порядка, расположенные по обе стороны от центрального максимума, $\alpha = 60^{\circ}$, то период d решётки равен:
 - 1) 6,0 мкм
- 2) 4,5 мкм
- 3) 3,0 мкм
- 4) 2,5 mkm
- 5) 2,0 mkm
- 17. Если красная граница фотоэффекта для некоторого металла соответствует длине волны $\lambda_{\rm K} =$ 621,5 нм, то работа выхода $A_{\mathrm{вых}}$ электрона с поверхности этого металла равна:
 - 1) $1,0 \ni B$
- 2) 1,4 ₉B
- 3) 1,7 ₉B
- 4) 2.0 9B5) 2,4 3B
- **18.** График зависимости числа N нераспавшихся ядер некоторого радиоактивного изотопа от времени t представлен на рисунке. От момента начала отсчета времени к моменту времени $t=3T_{1/2}\,(T_{1/2}\,-\,$ период полураспада) распалось число ядер $|\Delta N|$, равное:



- 1) $6, 3 \cdot 10^{20}$ 2) $5, 4 \cdot 10^{20}$ 3) $3, 6 \cdot 10^{20}$ 4) $1, 8 \cdot 10^{20}$ 5) $0, 9 \cdot 10^{20}$

- **19.** Спортсмен, двигаясь прямолинейно, пробежал дистанцию длиной l=90 м, состоящую из двух участков, за промежуток времени $\Delta t=13$ с. На первом участке спортсмен разгонялся из состояния покоя и двигался равноускоренно в течение промежутка времени $\Delta t_1 = 8,0$ с. Если на втором участке спортсмен бежал равномерно, то модуль скорости υ спортсмена на финише равен ... $\frac{M}{C}$.
- **20.** Игрок в кёрлинг сообщил плоскому камню начальную скорость \vec{v}_0 , после чего камень скользил по горизонтальной поверхности льда без вращения, пока не остановился. Коэффициент трения между камнем и льдом $\mu = 0,0093$. Если путь, пройденный камнем, s = 34 м, то модуль начальной скорости v_0 камня равен ... $\frac{ZM}{C}$.

- **21.** Камень массой m=0,20 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $\upsilon_0=20$ $\frac{\mathrm{M}}{\mathrm{C}}$. Кинетическую энергию $E_{\mathrm{K}}=80$ Дж камень будет иметь через промежуток времени Δt после броска, равный ... с.
- **22.** Находящийся на шкафу кот массой $m_1 = 3,0$ кг запрыгивает на светильник, расположенный на расстоянии L = 100 см от шкафа (см. рис.). Начальная скорость кота направлена горизонтально. Светильник массой $m_2 = 2,0$ кг подвешен на невесомом нерастяжимом шнуре на расстоянии H_1 =140 см от потолка. Расстояние от потолка до шкафа H_2 = 95 см. Если пренебречь размерами кота и светильника, то максимальное отклонение светильника с котом от положения равновесия в горизонтальном направлении будет равно ... см.


Примечание. Колебания светильника с котом нельзя считать гармоническими.

- **23.** В закрытом сосуде вместимостью V=1,50 см³ находится идеальный газ $\left(M=32,0\frac{\Gamma}{\text{МОЛЬ}}\right)$, средняя квадратичная скорость поступательного движения молекул которого $\langle \upsilon_{\text{KB}} \rangle = 300\,\frac{\text{M}}{\text{C}}$. Если число молекул газа в сосуде $N=4,00\cdot 10^{20}$, то давление p газа в сосуде равно ... кПа. (Число Авогадро $6,02\cdot 10^{23}$ моль $^{-1}$.)
- **24.** В плавильной печи с коэффициентом полезного действия $\eta = 50,0$ % при температуре $t_1 = 20$ °C находится металлолом $\left(c = 461 \, \frac{\text{Дж}}{\text{кг} \cdot \text{K}}, \; \lambda = 270 \, \frac{\text{кДж}}{\text{кг}}\right)$, состоящий из однородных металлических отходов. Металлолом требуется нагреть до температуры плавления $t_2 = 1400$ °C и полностью расплавить. Если для этого необходимо сжечь каменный уголь $\left(q = 30,0 \, \frac{\text{МДж}}{\text{кг}}\right)$ массой M = 18,0 кг, то масса m металлолома равна ... кг.
- **25.** В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в четыре раза больше минимального, а максимальный объём газа в n = 2,5 раза больше минимального. Коэффициент полезного действия η цикла равен ... %.

26. На рисунке изображено сечение сосуда с вертикальными стенками, находящегося в воздухе и заполненного водой (n=1,33). Световой луч, падающий из воздуха на поверхность воды в точке A, приходит в точку B, расположенную на стенке сосуда. Угол падения луча на воду $\alpha=60^\circ$. Если расстояние |AC|=30 мм, то расстояние |AB| равно ... мм.

- **27.** Точечные заряды q_1 = 2,0 нКл и q_2 находятся в вакууме в двух вершинах равностороннего треугольника, длина стороны которого a=20 см. Если потенциал электростатического поля, созданного этими зарядами в третьей вершине треугольника, $\phi=720$ В, то заряд q_2 равен ... нКл.
- **28.** Троллейбус массой m=11 т движется по горизонтальному участку дороги прямолинейно и равномерно со скоростью, модуль которой $\upsilon=36$ $\frac{\mathrm{KM}}{\mathrm{Y}}$. Отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F}{mg}=0.011$. Если напряжение на двигателе троллейбуса U=550 В, а коэффициент полезного действия двигателя $\eta=81$ %, то сила тока I в двигателе равна ... А.
- **29.** Квадратная рамка площадью $S = 0.40 \text{ м}^2$, изготовленная из тонкой проволоки сопротивлением R = 2.0 Ом, находится в однородном магнитном поле, линии индукции которого перпендикулярны плоскости рамки. Модуль индукции магнитного поля B = 0.10 Тл. Рамку повернули вокруг одной из её сторон на угол $\varphi = 90^\circ$. При этом через поперечное сечение проволоки прошёл заряд q, модуль которого равен ... мКл.
- **30.** Две лёгкие спицы одинаковой длины h и стержень массой m и длиной L=20 см образуют Π -образный (прямоугольный) проводник CDEF, который может свободно вращаться вокруг горизонтальной оси OO'. Проводник помещён в однородное магнитное поле, модуль индукции которого B=100 мТл, а линии индукции направлены вертикально вверх (см. рис.). В проводнике протекает постоянный ток I=39 А. Проводник отклонили так, что его плоскость стала горизонтальной, а затем отпустили без начальной скорости. Если мгновенная скорость стержня стала равной нулю в тот момент, когда угол между плоскостью проводника и горизонтом $\phi=30^\circ$, то масса m стержня равна ... Γ .

